Skip to content

🤖 Artificial Intelligence & Machine Learning Terminology

Comprehensive glossary of AI, Machine Learning, Data Science, and related emerging technology terms.


🧠 Core AI/ML Concepts

Istilah Definisi
Algorithm Sekumpulan aturan atau instruksi yang diberikan kepada AI untuk membantu memecahkan masalah
Artificial Intelligence (AI) Simulasi proses kecerdasan manusia oleh mesin atau sistem komputer
Machine Learning (ML) Subset dari AI yang memungkinkan mesin belajar dan berkembang dari pengalaman tanpa pemrograman eksplisit
Deep Learning Subset dari ML yang menggunakan neural network dengan banyak lapisan untuk menganalisis data
Neural Network Sistem komputasi yang terinspirasi dari jaringan neural biologis yang membentuk otak hewan
Natural Language Processing (NLP) AI capability yang enables computers untuk understand, interpret, dan generate human language
Computer Vision Field of AI yang trains computers untuk interpret dan understand visual world
Reinforcement Learning Type of ML dimana agent learns untuk make decisions melalui trial dan error
Supervised Learning ML approach dimana algorithm learns dari labeled training data
Unsupervised Learning ML technique dimana algorithm finds patterns dalam data tanpa labeled examples
Semi-supervised Learning Combination of supervised dan unsupervised learning techniques
Transfer Learning Technique dimana model trained pada satu task di-reuse sebagai starting point untuk another task

📊 Data Science & Analytics

Istilah Definisi
Big Data Large, complex datasets yang require specialized tools untuk process dan analyze
Data Mining Process of discovering patterns dan knowledge dari large amounts of data
Data Pipeline Series of data processing steps dimana output dari one step adalah input untuk next
Feature Engineering Process of selecting dan transforming variables untuk improve model performance
Feature Selection Process of selecting subset of relevant features untuk model construction
Data Preprocessing Technique untuk prepare raw data untuk machine learning algorithms
Dimensionality Reduction Process of reducing number of features dalam dataset while preserving information
Cross-validation Statistical method untuk evaluate machine learning model performance
Overfitting Modeling error yang occurs ketika function fits training data too closely
Underfitting Occurs ketika model cannot capture underlying trend of data
Bias-Variance Tradeoff Balance between model's ability untuk minimize bias dan variance dalam predictions

🔮 Model Types & Architectures

Istilah Definisi
Convolutional Neural Network (CNN) Deep learning architecture particularly effective untuk image recognition tasks
Recurrent Neural Network (RNN) Neural network architecture designed untuk sequential data processing
Long Short-Term Memory (LSTM) Type of RNN architecture yang can learn long-term dependencies
Transformer Neural network architecture yang relies entirely pada attention mechanisms
Generative Adversarial Network (GAN) Architecture dengan two neural networks competing untuk generate realistic data
Autoencoder Neural network trained untuk copy input ke output untuk dimensionality reduction
Decision Tree Tree-like model untuk decision making berdasarkan feature values
Random Forest Ensemble method yang combines multiple decision trees
Support Vector Machine (SVM) Supervised learning model untuk classification dan regression
K-Means Clustering Unsupervised algorithm untuk grouping data into k clusters
Linear Regression Statistical method untuk modeling relationship between dependent dan independent variables

🎯 Training & Optimization

Istilah Definisi
Gradient Descent Optimization algorithm untuk finding minimum of function
Backpropagation Algorithm untuk training neural networks dengan computing gradients
Learning Rate Hyperparameter yang controls how much model adjusts weights during training
Epoch One complete pass through entire training dataset
Batch Size Number of training examples processed before model weights are updated
Hyperparameter Tuning Process of finding optimal hyperparameters untuk machine learning model
Regularization Technique untuk prevent overfitting dengan adding penalty untuk complexity
Dropout Regularization technique dimana randomly selected neurons are ignored during training
Early Stopping Technique untuk stop training ketika performance pada validation set stops improving
Loss Function Function yang measures difference between predicted dan actual values
Activation Function Function dalam neural network yang determines output of neuron

📈 Performance & Evaluation

Istilah Definisi
Accuracy Percentage of correct predictions made oleh model
Precision Ratio of correctly predicted positive observations to total predicted positives
Recall (Sensitivity) Ratio of correctly predicted positive observations to all actual positives
F1-Score Weighted average of precision dan recall
ROC Curve Graph showing performance of classification model at all classification thresholds
AUC (Area Under Curve) Measure of ability of classifier untuk distinguish between classes
Confusion Matrix Table untuk describing performance of classification model
Mean Squared Error (MSE) Average of squares of errors between actual dan predicted values
R-squared Statistical measure representing proportion of variance explained oleh model
Cross-entropy Loss Loss function commonly used untuk classification problems

🚀 Generative AI & LLMs

Istilah Definisi
Large Language Model (LLM) AI model trained pada large amounts of text data untuk understand dan generate language
Generative Pre-trained Transformer (GPT) Type of LLM architecture untuk generating human-like text
Prompt Engineering Practice of designing inputs untuk get desired outputs dari AI models
Fine-tuning Process of adapting pre-trained model untuk specific task atau domain
BERT Bidirectional Encoder Representations dari Transformers - model untuk understanding language
Tokenization Process of breaking text into individual tokens atau words
Embedding Dense vector representation of words atau phrases dalam continuous space
Attention Mechanism Technique yang allows model untuk focus pada specific parts of input
Transformer Architecture Neural network architecture yang uses self-attention mechanisms
Zero-shot Learning Model's ability untuk perform task tanpa specific training examples
Few-shot Learning Learning approach dengan only few examples per class

🎨 AI Applications & Domains

Istilah Definisi
Computer Vision AI field yang enables computers untuk derive meaningful information dari images
Natural Language Generation AI capability untuk produce human-like text dari structured data
Speech Recognition Technology yang converts spoken language into text
Recommendation System Algorithm yang suggests relevant items kepada users berdasarkan preferences
Autonomous Systems Systems yang can perform tasks tanpa human intervention
Robotics Field combining AI dengan mechanical engineering untuk create intelligent machines
Chatbot AI program designed untuk simulate conversation dengan human users
Virtual Assistant AI-powered software agent yang can perform tasks atau services untuk user
Predictive Analytics Use of data untuk predict future outcomes atau trends
Anomaly Detection Identification of rare items yang significantly differ dari majority of data

🔧 Tools & Frameworks

Istilah Definisi
TensorFlow Open-source machine learning framework developed oleh Google
PyTorch Open-source machine learning library developed oleh Meta/Facebook
Scikit-learn Machine learning library untuk Python programming language
Keras High-level neural networks API running on top of TensorFlow
Pandas Data manipulation dan analysis library untuk Python
NumPy Library untuk scientific computing dengan Python
Jupyter Notebook Interactive computing environment untuk creating dan sharing documents
Docker Platform untuk developing, shipping, dan running applications dalam containers
Kubernetes Container orchestration system untuk automating deployment dan management
MLflow Open-source platform untuk managing machine learning lifecycle
Apache Spark Unified analytics engine untuk large-scale data processing

🏢 AI Ethics & Governance

Istilah Definisi
AI Ethics Moral principles dan values yang guide development dan deployment of AI systems
Algorithmic Bias Systematic errors dalam algorithm yang create unfair outcomes
Explainable AI (XAI) AI systems yang provide understandable explanations untuk their decisions
Fairness Principle ensuring AI systems don't discriminate against certain groups
Privacy-Preserving ML Techniques untuk training models while protecting sensitive data
Federated Learning Decentralized approach untuk training models tanpa centralizing data
Model Interpretability Degree untuk which human dapat understand cause untuk model's decision
Responsible AI Approach untuk developing AI systems yang are ethical, transparent, dan accountable
AI Governance Framework untuk ensuring ethical development dan deployment of AI
Data Sovereignty Legal concept regarding ownership dan control of digital data

Istilah Definisi
Artificial General Intelligence (AGI) Hypothetical AI yang matches atau exceeds human cognitive abilities
Multimodal AI AI systems yang can process dan understand multiple types of data simultaneously
Edge AI Deployment of AI algorithms locally pada hardware device
Quantum Machine Learning Integration of quantum computing dengan machine learning algorithms
Neuromorphic Computing Computer architecture inspired oleh human brain's neural networks
AutoML Automated process untuk applying machine learning untuk real-world problems
AI as a Service (AIaaS) Cloud-based service yang provides AI capabilities through APIs
Synthetic Data Artificially generated data untuk training machine learning models
Digital Twin Virtual representation of physical object atau system
Swarm Intelligence Collective behavior of decentralized systems

Terakhir diperbarui: August 7, 2025